Sains Malaysiana 53(6)(2024): 1405-1419
http://doi.org/10.17576/jsm-2024-5306-14
Molecular
Modelling Comparisons, Optical and Band Gap Characterisation of
4-Sulfocalix[4]arene Thin Film
(Perbandingan
Pemodelan Molekul, Pencirian Jurang Optik dan Jurang Jalur bagi Filem Nipis
4-Sulfokaliks[4]arene)
FARISH ARMANI HAMIDON, FARIDAH
LISA SUPIAN*, MAZLINA MAT DARUS, WONG
YEONG YI & NUR FARAH NADIA ABD KARIM
Physics Department, Faculty of
Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim,
Perak, Malaysia
Diserahkan: 11 Mac 2024/Diterima: 8
Mei 2024
Abstract
The advantageous
property of water-soluble calixarenes is their ability to form stable complexes
with inorganic guest molecules. Due to these attributes, their application in
areas including molecular recognition, sensing, and supramolecular chemistry is
extraordinarily alluring. The 4-sulfocalix[4]arene (SC[4]) is a
water-soluble molecule and a derivative of the calixarene family that has both
aromatic rings and sulfonate groups. The thin films were prepared using a
spin-coating technique and characterised by Ultraviolet-Visible Spectroscopy
(UV-Vis). By employing the Corey-Pauling-Koltun (CPK) model in conjunction with
density functional theory (DFT), the height and diameter of SC[4] were
precisely determined by devotedly representing its molecular shape and size.
Then, the calixarene thin film’s optical properties and light absorption by the
thin film were determined using the absorbance graph and Beer-Lambert law
equation. The band gap energy of the thin film was determined to be equal to
4.44 eV through the Tauc-plot method. These results substantiate the integration
of CPK models validated using DFT for measuring the size of SC[4] molecules and
characterising the thin film’s optical characteristics. In a nutshell, the
implementation of the CPK models was validated with DFT to determine the height
and diameter of the SC[4] and the optical characterisation of its thin film was
thoroughly determined in this study. The results obtained from this study are
not only essential for understanding the properties of SC [4] but also inspire
further research for multiple applications such as molecular recognition,
adsorption and supramolecular chemistry.
Keywords: Calixarene; Corey-Pauling-Koltun model; spin coating method;
ultraviolet-visible spectroscopy
Abstrak
Antara manfaat kaliksarena
larut air ialah keupayaan dan kemampuannya untuk membentuk kompleks yang stabil
dengan molekul tetamu bukan organik. Disebabkan sifat ini, penggunaannya dalam
pelbagai bidang termasuk pengecaman molekul, penderiaan dan kimia supramolekul
amat menarik perhatian untuk dikaji. 4-sulfokaliks[4]arena (SC[4]) adalah
molekul larut air dan terbitan daripada keluarga kaliksarena yang mempunyai
cincin aromatik dan kumpulan sulfonat dan selaput nipisnya difabrikasi
menggunakan teknik salutan berputar dan dicirikan dengan Spektroskopi Cahaya
Tampak-Ultralembayung (UV-Vis). Dengan menggunakan Model Corey-Pauling-Koltun
(CPK) dan disahkan bersama dengan teori kefungsian ketumpatan (DFT), ketinggian
dan diameter SC[4] ditentukan dengan tepat dalam melambangkan bentuk dan saiz
molekulnya secara nyata dan realistik. Kemudian, sifat optik selaput nipis
kaliksarena dan penyerapan cahaya oleh selaput nipis tersebut ditentukan
menggunakan graf penyerapan dan persamaan Hukum Beer-Lambert. Jurang
jalur selaput nipis ditentukan bersamaan dengan 4.44 eV melalui kaedah plot
Tauc. Hasil keputusan kajian ini telah mengesahkan integrasi model CPK yang
disahkan menggunakan DFT untuk mengukur saiz molekul SC[4] dan mencerap ciri
optik selaput nipisnya. Secara ringkasnya, pelaksanaan model CPK disahkan
dengan DFT untuk menentukan ketinggian dan diameter SC[4] dan pencirian optik
selaput nipisnya telah ditentukan dengan teliti dalam kajian ini. Hasil yang
diperoleh daripada kajian ini penting kerana boleh digunakan dalam penyelidikan
lanjut untuk pelbagai aplikasi seperti pengecaman molekul, penjerapan dan kimia
supramolekul.
Kata kunci: Kaliksarena;
model Corey-Pauling-Koltun; spektroskopi cahaya tampak-ultralembayung; teknik
salutan berputar
RUJUKAN
Acikbas,
Y., Bozkurt, S., Halay, E., Capan, R., Guloglu, M.L., Sirit, A. & Erdogan,
M. 2017. Fabrication and characterization of calix[4]arene Langmuir–Blodgett
thin film for gas sensing applications. Journal of Inclusion Phenomena and
Macrocyclic Chemistry 89(1-2): 77-84. doi:10.1007/s10847-017-0732-6
Arduini,
A., Pochini, A., Reverberi, S. & Ungaro, R. 1984. p-t-Butyl-calix[4]arene
tetracarboxylic acid. A water soluble calixarene in a cone structure. Journal
of the Chemical Society, Chemical Communications 15: 981-982
doi:10.1039/C39840000981
Asahi,
R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. 2001. Visible-light
photocatalysis in nitrogen-doped titanium oxides. Science 293 (5528).
doi:10.1126/science.1061051
Atwood,
J.L., Barbour, L.J., Hardie, M.J. & Raston, C.L. 2001. Metal
sulfonatocalix[4,5]arene complexes: Bi-layers, capsules, spheres, tubular
arrays and beyond. Coordination Chemistry Reviews 222(1): 3-32.
doi:10.1016/S0010-8545(01)00345-9
Ball,
V., Winterhalter, M., Perret, F., Esposito, G. & Coleman, A.W. 2001.
P-sulfonatocalix[6]arene is an effective coacervator of poly(allylamine
hydrochloride). Chemical Communications 1(21): 2276-2277.
doi:10.1039/b106361h
Barbosa-García,
O., Ramos-Ortíz, G., Maldonado, J.L., Pichardo-Molina, J.L., Meneses-Nava,
M.A., Landgrave, J.E.A. & Cervantes-Martínez, J. 2007. UV-vis absorption
spectroscopy and multivariate analysis as a method to discriminate tequila. Spectrochimica
Acta - Part A: Molecular and Biomolecular Spectroscopy 66(1): 129-134.
doi:10.1016/j.saa.2006.02.033
Bayda,
S., Adeel, M., Tuccinardi, T., Cordani, M. & Rizzolio, F. 2020. The history
of nanoscience and nanotechnology: From chemical-physical applications to
nanomedicine. Molecules 25(1): 112. doi:10.3390/molecules25010112
Bensenane,
B., Asfari, Z., Platas-Iglesias, C., Esteban-Gómez, D., Djafri, F., Elhabiri,
M. & Charbonnière, L.J. 2016. Sulphur-rich functionalized calix[4]arenes
for selective complexation of Hg2+ over Cu2+, Zn2+ and Cd2+. Dalton Transactions 45(38): 15211-15224.
doi:10.1039/c6dt02628a
Bhushan,
B. 2017. Introduction to Nanotechnology. 4th ed. Springer Handbooks.
doi:10.1007/978-3-662-54357-3_1
Blinder,
S.M. 2020. Density functional theory. Introduction to Quantum Mechanics.
Massachusetts: Academic Press. pp. 235-244.
doi:10.1016/B978-0-12-822310-9.00022-7
Böckmann,
M., Schemme, T., De Jong, D.H., Denz, C., Heuer, A. & Doltsinis, N.L. 2015.
Structure of P3HT crystals, thin films, and solutions by UV/Vis spectral
analysis. Physical Chemistry Chemical Physics 17(43): 28616-28625.
doi:10.1039/c5cp03665h
Boudrioua,
A., Chakaroun, M. & Fischer, A. 2017. Organic light-emitting diodes. An
Introduction to Organic Lasers. ISTE Press - Elsevier. pp. 49-93.
Bridges,
C.R., Ford, M.J., Popere, B.C., Bazan, G.C. & Segalman, R.A. 2016.
Formation and structure of lyotropic liquid crystalline mesophases in
donor-acceptor semiconducting polymers. Macromolecules 49(19):
7220-7229. doi:10.1021/acs.macromol.6b01650
Budurova,
D., Momekova, D., Momekov, G., Shestakova, P., Penchev, H. & Rangelov, S.
2021. PEG-modified tert-octylcalix[8]arenes as drug delivery nanocarriers of
silibinin. Pharmaceutics 13(12): 2025. doi:10.3390/pharmaceutics13122025
Chen,
F., Li, X., Hihath, J., Huang, Z. & Tao, N. 2006. Effect of anchoring
groups on single-molecule conductance: Comparative study of thiol-, amine-, and
carboxylic-acid-terminated molecules. Journal of the American Chemical
Society 128(49): 15874-15881. doi:10.1021/ja065864k
Cheng,
X. 2014. Nanostructures: Fabrication and applications. In Nanolithography:
The Art of Fabricating Nanoelectronic and Nanophotonic Devices and Systems,
edited by Feldman, M. Cambridge: Woodhead Publishing. pp. 348-375.
Christian,
G.D., Dasgupta, P.K. & Schug, K.A. 2013. Analytical Chemistry. 7th
ed. John Wiley & Sons Inc.
Corminboeuf,
C., Tran, F. & Weber, J. 2006. The role of density functional theory in
chemistry: Some historical landmarks and applications to zeolites. Journal
of Molecular Structure: THEOCHEM 762(1-3): 1-7.
doi:10.1016/j.theochem.2005.07.036
de
La Lande, A., Alvarez-Ibarra, A., Hasnaoui, K., Cailliez, F., Wu, X., Mineva,
T., Cuny, J., Calaminici, P., López-Sosa, L., Geudtner, G., Navizet, I.,
Iriepa, C.G., Salahub, D.R. & Köster, A.M. 2019. Molecular simulations with
in-deMon2k QM/MM, a tutorial-review. Molecules 24(9): 1653.
doi:10.3390/molecules24091653
Dillon,
P.F., Root-Bernstein, R.S. & Lieder, C.M. 2006. Molecular shielding of
electric field complex dissociation. Biophysical Journal 90(4):
1432-1438. doi:10.1529/biophysj.105.071969
Dinu,
R., Miller, E., Yu, G., Chen, B., Scarpaci, A., Chen, H. & Pilgrim, C.
2013. High-speed polymer optical modulators. In Optical Fiber
Telecommunications: Components and Subsystems, Chapter 5, edited by Kaminow,
I.P., Li, T. & Willner, A.E. Massachusetts: Academic Press. pp. 175-204.
Edelsbrunner,
H. & Koehl, P. 2003. The weighted-volume derivative of a space-filling
diagram. PNAS 100 (5) 2203-2208.
www.pnas.orgcgidoi10.1073pnas.0537830100
Español,
E. & Villamil, M. 2019. Calixarenes: Generalities and their role in
improving the solubility, biocompatibility, stability, bioavailability,
detection, and transport of biomolecules. Biomolecules 9(3): 90.
doi:10.3390/biom9030090
Fahmy,
S.A., Ponte, F., Sicilia, E. & El-Said Azzazy, H.M. 2020. Experimental and
computational investigations of carboplatin supramolecular complexes. ACS
Omega 5(48): 31456-31466. doi:10.1021/acsomega.0c05168
Fan,
Q., Su, W., Guo, X., Wang, Y., Chen, J., Ye, C., Zhang, M. & Li, Y. 2017.
Side-chain engineering for efficient non-fullerene polymer solar cells based on
a wide-bandgap polymer donor. Journal of Materials Chemistry A 5(19):
9204-9209. doi:10.1039/c7ta02075a
Feldman,
M. 2014. Nanolithography: The Art of Fabricating Nanoelectronic and
Nanophotonic Devices and Systems. Woodhead Publishing Limited.
doi:10.1533/9780857098757
Field,
M.J., Bash, P.A. & Karplus, M. 1990. A combined quantum mechanical and
molecular mechanical potential for molecular dynamics simulations. Journal
of Computational Chemistry 11(6): 700-733. doi:10.1002/jcc.540110605
Fujimoto,
T., Takeda, K. & Nonaka, T. 2008. Chapter 7. Airborne molecular
contamination: Contamination on substrates and the environment in
semiconductors and other industries. In Developments in Surface
Contamination and Cleaning. 2nd ed., edited by Kohli, R. & Mittal, K.L.
William Andrew Publishing. pp. 197-329.
Garcia-Rio,
L., Basílio, N. & Francisco, V. 2020. Counterion effect on
sulfonatocalix[n]arene recognition. Pure and Applied Chemistry 92(1):
25-37. doi:10.1515/pac-2019-0305
Goodsell,
D.S. & Jenkinson, J. 2018. Molecular illustration in research and
education: Past, present, and future. Journal of Molecular Biology 430(21): 3969-3981.
doi:10.1016/j.jmb.2018.04.043
Gunawardhana,
R., Bulumulla, C., Gamage, P.L., Timmerman, A.J., Udamulle, C.M., Biewer, M.C.
& Stefan, M.C. 2019. Thieno[3,2- b]pyrrole and benzo[ c][1,2,5]thiadiazole
donor-acceptor semiconductors for organic field-effect transistors. ACS
Omega 4(22): 19676-19682. doi:10.1021/acsomega.9b02274
Guo,
D.S., Wang, K. & Liu, Y. 2008. Selective binding behaviors of p-sulfonatocalixarenes
in aqueous solution. Journal of Inclusion Phenomena and Macrocyclic
Chemistry 62: 1-21. doi:10.1007/s10847-008-9452-2
Gurd,
F.R.N. 1974. The use of Corey-Pauling-Koltun space-filling models in teaching. Biochemical
Education 2(2): 27-29. doi:10.1016/0307-4412(74)90008-9
Hanson,
R.M., Prilusky, J., Zhou, R., Nakane, T. & Sussman, J.L. 2013. JSmol and
the next-generation web-based representation of 3D molecular structure as
applied to proteopedia. Israel Journal of Chemistry 53(3-4): 207-216.
doi:10.1002/ijch.201300024
Hassan,
A.K., Nabok, A.V., Ray, A.K., Lucke, A., Smith, K., Stirling, C.J.M. &
Davis, F. 1999. Thin films of calix-4-resorcinarene deposited by spin coating
and langmuir-blodgett techniques: Determination of film parameters by surface
plasmon resonance. Materials Science and Engineering: C 8-9: 251-255.
Haunschild,
R., Barth, A. & French, B. 2019. A comprehensive analysis of the history of
DFT based on the bibliometric method RPYS. Journal of Cheminformatics 11(1): 72. doi:10.1186/s13321-019-0395-y
Herráez,
A. 2006. Biomolecules in the computer: Jmol to the rescue. Biochemistry and
Molecular Biology Education 34(4): 255-261.
doi:10.1002/bmb.2006.494034042644
Hu,
X.Y., Peng, S., Guo, D.S., Ding, F. & Liu, Y. 2015. Molecular recognition
of amphiphilic p-sulfonatocalix[4]arene with organic ammoniums. Supramolecular
Chemistry 27(5-6): 336-345. doi:10.1080/10610278.2014.967242
Jmol:
An open-source Java viewer for chemical structures in 3D. 2023. ‘Jmol’.
Accessed May 12. http://www.jmol.org/
Jubu,
P.R., Obaseki, O.S., Nathan-Abutu, A., Yam, F.K., Yusof, Y. & Ochang, M.B.
2022. Dispensability of the conventional Tauc’s plot for accurate bandgap
determination from UV–Vis optical diffuse reflectance data. Results in
Optics 9: 100273. doi:10.1016/j.rio.2022.100273
Kafle,
B.P. 2020. Introduction to nanomaterials and application of UV–Visible
spectroscopy for their characterization. Chemical Analysis and Material
Characterization by Spectrophotometry. Elsevier. pp. 147-198.
doi:10.1016/b978-0-12-814866-2.00006-3
Khalifeh,
S. 2020. Optimization of electrical, electronic and optical properties of
organic electronic structures. Polymers in Organic Electronics. ChemTec
Publishing. pp. 185-202. doi:10.1016/B978-1-927885-67-3.50009-2
Kissell,
R. & Poserina, J. 2017. Advanced math and statistics. Optimal Sports
Math, Statistics, and Fantasy. Elsevier. pp. 103-135. doi:10.1016/B978-0-12-805163-4.00004-9
Kohn,
W. 1998. Nobel lecture: Electronic structure of matter-wave functions and
density functionals*. Reviews of Modern Physics 71: 1253-1266.
doi:10.1103/revmodphys.71.1253
Kuball,
H.G., Höfer, T. & Kiesewalter, S. 2016. Chiroptical spectroscopy, general
theory. In Encyclopedia of Spectroscopy and Spectrometry. 3rd ed.,
edited by Lindon, J.C., Tranter, G.E. & Koppenaal, D.W. Massachusetts:
Academic Press. pp. 217-231. doi:10.1016/B978-0-12-409547-2.04980-5
Li,
Z., Weng, K., Chen, A., Sun, X., Wei, D., Yu, M., Huo, L. & Sun, Y. 2017.
Benzothiadiazole versus thiophene: Influence of the auxiliary acceptor on the
photovoltaic properties of donor–acceptor-based copolymers. Macromolecular
Rapid Communications 39(2): 1700547. doi:10.1002/marc.201700547
Lim,
C.K.D. & Supian, F.L. 2019. Calix[4]arene and calix[8]arene langmuir films:
Surface studies, optical and structural characterizations. International
Journal of Innovative Technology and Exploring Engineering 8(8S): 80-85.
Livingston,
E.H. 2004. The mean and standard deviation: What does it all mean? Journal
of Surgical Research 119(2): 117-123. doi:10.1016/j.jss.2004.02.008
Loftus,
S.C. 2022. What is statistics and why is it important? Basic Statistics with
R: Reaching Decision with Data. Massachusetts: Academic Press. pp.
3-6. doi:10.1016/B978-0-12-820788-8.00010-9
Maurer,
R.J., Freysoldt, C., Reilly, A.M., Brandenburg, J.G., Hofmann, O.T., Björkman,
T., Lebègue, S. & Tkatchenko, A. 2019. Advances in density-functional
calculations for materials modeling. Annual Review of Materials Research 49(1): 1-30. doi:10.1146/annurev-matsci-070218
McMurry,
J. 2023. Benzene and aromaticity. In Organic Chemistry: A Tenth Edition.
Rice University: OpenStax. https://openstax.org/details/books/organic-chemistry
Millership,
J.S. 2001. A preliminary investigation of the solution complexation of
4-sulphonic calix[n]arenes with testosterone. Journal of Inclusion Phenomena
and Macrocyclic Chemistry 39: 327-331. doi:10.1023/A:1011196217714
Millington,
K.R. 2008. Improving the whiteness and photostability of wool. In Advances
in Wool Technology, edited by Johnson, N.A.G. & Russell, I.M. Woodhead
Publishing. pp. 217-247. doi:10.1533/9781845695460.2.217
Mishra,
A., Bhatt, N. & Bajpai, A.K. 2019. Nanostructured superhydrophobic coatings
for solar panel applications. In Nanomaterials-Based Coatings: Fundamentals
and Applications, edited by Tri, P.N., Rtimi, S. & Plamondon, C.M.O.
Elsevier. pp. 397-424. doi:10.1016/B978-0-12-815884-5.00012-0
Motooka,
T. & Uda, T. 2015. Multiscale modeling methods. In Handbook of Silicon
Based MEMS Materials and Technologies, edited by Lindroos, V., Tilli, M.,
Lehto, A. & Matooka, T. William Andrew. pp. 241-252.
doi:10.1016/B978-0-323-29965-7.00008-7
Nasrollahzadeh,
M., Sajadi, S.M., Sajjadi, M. & Issaabadi, Z. 2019. Applications of
nanotechnology in daily life. Interface Science and Technology 28:
113-143. doi:10.1016/B978-0-12-813586-0.00004-3
Owen,
T. 1996. Fundamentals of Modern UV-Visible Spectroscopy: A Primer.
Hewlett-Packard Company. doi:10.1017/CBO9781107415324.004
Özbek,
Z., Çapan, R., Göktaş, H., Şen, S., İnce, F.G., Özel, M.E. &
Davis, F. 2011. Optical parameters of calix[4]arene films and their response to
volatile organic vapors. Sensors and Actuators B: Chemical 158(1):
235-240. doi:10.1016/j.snb.2011.06.011
Pal,
S. 2020. Structure analysis and visualization. Fundamentals of Molecular
Structural Biology. Academic Press. pp. 119-147. Elsevier.
doi:10.1016/b978-0-12-814855-6.00006-7
Patra,
J.K. & Baek, K.H. 2014. Green nanobiotechnology: Factors affecting
synthesis and characterization techniques. Journal of Nanomaterials 2014: 417305. doi:10.1155/2014/417305
Pederson,
M.R. & Baruah, T. 2015. Self-interaction corrections within the
fermi-orbital-based formalism. In Advances in Atomic, Molecular and Optical
Physics, edited by Arimondo, E., Lin, C.C. & Yelin, S.F. Massachusetts:
Academic Press. 64: 153-180. doi:10.1016/BS.AAMOP.2015.06.005
Pentassuglia,
S., Agostino, V. & Tommasi, T. 2018. EAB - Electroactive biofilm: A
biotechnological resource. In Encyclopedia of Interfacial Chemistry: Surface
Science and Electrochemistry, edited by Wandelt, K. Elsevier. pp. 110-123.
doi:10.1016/B978-0-12-409547-2.13461-4
Perkampus,
H-H. 1992a. Analytical applications of UV-Vis spectroscopy. In UV-VIS Spectroscopy
and Its Applications. Springer Lab Manuals. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-77477-5_4
Perkampus,
Heinz-Helmut. 1992b. Photometers and spectrophotometers. In UV-VIS
Spectroscopy and Its Applications. Springer Lab Manuals. Springer, Berlin,
Heidelberg. doi:10.1007/978-3-642-77477-5_3
Perkampus,
Heinz-Helmut. 1992c. UV-VIS Spectroscopy and Its Applications. Springer
Lab Manuals. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-77477-5
Perret,
F., Lazar, A.N. & Coleman, A.W. 2006. Biochemistry of the para-sulfonato-calix
[n]arenes. Chemical Communications 23: 2425-2438. doi:10.1039/b600720c
Petty,
M.C. 2005. Organic thin film architectures: Fabrication and properties. In Surfaces
and Interfaces for Biomaterials, edited by Vadgama, P. Woodhead Publishing.
pp. 60-82. doi:10.1533/9781845690809.1.60
Pietrzyk,
D.J. & Frank, C.W. 1979. Qualitative analysis: Ultraviolet, visible, and
infrared. Analytical Chemistry, 2nd ed. Massachusetts: Academic Press.
pp. 410-424. doi:10.1016/B978-0-12-555160-1.50022-8
Prata,
J.V., Barata, P.D. & Pescitelli, G. 2014. Inherently chiral calix[4]arenes
with planar chirality: Two new entries to the family. Pure and Applied
Chemistry 86(11): 1819-1828. doi:10.1515/pac-2014-0707
Rahimpour,
M.R., Makarem, M.A., Kiani, M.R. & Sedghamiz, M.A. 2021. Nanofluids for
Heat and Mass Transfer. Elsevier. https://doi.org/10.1016/C2020-0-00358-0.
Rajavelu,
K. & Rajakumar, P. 2018. Synthesis, characterization, photophysical and
electrochemical properties of triazinooxacalix[2]arenes with bisphenol a motif. Tetrahedron 74(22): 2812-2818. doi:10.1016/j.tet.2018.04.064
Ramírez-Santos,
Á.A., Acevedo-Peña, P. & Córdoba, E.M. 2012. Enhanced photocatalytic
activity of TiO2 films by modification with polyethylene glycol. Química
Nova 35(10): 1931-1935. doi:10.1590/S0100-40422012001000008
Razali,
A.S., Supian, F.L., Abu Bakar, S., Richardson, T.H. & Azahari, N.A. 2015.
The properties of carbon nanotube on novel calixarene thin film. International
Journal of Nanoelectronics and Materials 8: 39-45.
Rocha,
F.S., Gomes, A.J., Lunardi, C.N., Kaliaguine, S. & Patience, G.S. 2018.
Experimental methods in chemical engineering: Ultraviolet visible
spectroscopy-UV-Vis. Canadian Journal of Chemical Engineering 96(12):
2512-2517. doi:10.1002/cjce.23344
Saleh,
J., Haider, S., Akhtar, M.S., Saqib, M., Javed, M., Elshahat, S. & Kamal,
G.M. 2023. Energy level prediction of organic semiconductors for photodetectors
and mining of a photovoltaic database to search for new building units. Molecules 28(3): 1240. doi:10.3390/molecules28031240
Saleh,
N.A., Elhaes, H. & Ibrahim, M. 2017. Design and development of some viral
protease inhibitors by QSAR and molecular modeling studies. In Viral
Proteases and Their Inhibitors, edited by Gupta, S.P. Massachusetts:
Academic Press. pp. 25-58. doi:10.1016/B978-0-12-809712-0.00002-2
Shahzad,
F., Sheltami, T.R., Shakshuki, E.M. & Shaikh, O. 2016. A review of latest
web tools and libraries for state-of-the-art visualization. Procedia
Computer Science 98: 100-106. doi:10.1016/j.procs.2016.09.017
Shinkai,
S., Araki, K., Matsuda, T., Nishiyama, N., Ikeda, H., Takasu, I. & Iwamoto,
M. 1990. NMR and crystallographic studies of a p-sulfonatocalix[4] arene-guest
complex. Journal of the American Chemical Society 112(25): 9053-9058.
doi:10.1021/ja00181a004
Shinkai,
S., Mori, S., Tsubaki, T., Sone, T. & Manabe, O. 1984. New water-soluble
host molecules derived from calix[6]arene. Tetrahedron Letters 25(46):
5315-5318. doi:10.1016/S0040-4039(01)81592-6
Silakari,
O. & Singh, P.K. 2021. Fundamentals of molecular modeling. Concepts and
Experimental Protocols of Modelling and Informatics in Drug Design.
Massachusetts: Academic Press. 1-27. doi:10.1016/b978-0-12-820546-4.00001-5
Smith,
G. 2015. Descriptive statistics. Essential Statistics, Regression, and
Econometrics. Massachusetts: Academic Press. pp. 71-98.
doi:10.1016/B978-0-12-803459-0.00003-0
Supian,
F.L., Lim, D.C.K. & Razali, A.S. 2017. Conductivity comparison of
calix[8]arene-MWCNTs through spin coating technique. Sains Malaysiana 46(1): 91-96. doi:10.17576/jsm-2017-4601-12
Tian,
X., Chen, L.X., Yao, Y.Q., Chen, K., Chen, M.D., Zeng, X. & Tao, Z. 2018.
4-sulfocalix[4]arene/cucurbit[7]uril-based supramolecular assemblies through
the outer surface interactions of cucurbit[n]uril. ACS Omega 3(6):
6665-6672. doi:10.1021/acsomega.8b00829
Torres-Rivero,
K., Bastos-Arrieta, J., Fiol, N. & Florido, A. 2021. Metal and metal oxide
nanoparticles: An integrated perspective of the green synthesis methods by
natural products and waste valorization: Applications and challenges. Comprehensive
Analytical Chemistry 94: 433-469. doi:10.1016/bs.coac.2020.12.001
Van
Mourik, T., Bühl, M. & Gaigeot, M.P. 2014. Density functional theory across
chemistry, physics and biology. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 372(2011):
20120488. doi:10.1098/rsta.2012.0488
Wahyuningsih,
S., Wulandari, L., Wartono, M.W., Munawaroh, H. & Ramelan, A.H. 2017. The
effect of pH and color stability of anthocyanin on food colorant. IOP
Conference Series: Materials Science and Engineering 193: 012047.
doi:10.1088/1757-899X/193/1/012047
Warshel,
A. & Levitt, M. 1976. Theoretical studies of enzymic reactions: Dielectric,
electrostatic and steric stabilization of the carbonium ion in the reaction of
lysozyme. Journal of Molecular Biology 103(2): 227-249.
doi:10.1016/0022-2836(76)90311-9.
Warshel,
A. & Karplus, M. 1972. Calculation of ground and excited state potential
surfaces of conjugated molecules. I. Formulation and parametrization. Journal
of the American Chemical Society 94(16): 5612-5625.
doi:10.1021/ja00771a014.
Wypych,
G. 2015. Handbook of UV Degradation and Stabilization. 2nd ed., Chemtech
Publishing. doi:10.1016/C2014-0-01351-2
Xing,
J., Takeuchi, K., Kamei, K., Nakamuro, T., Harano, K. & Nakamura, E. 2022.
Atomic-number (Z)-correlated atomic sizes for deciphering electron microscopic
molecular images. Proceedings of the National Academy of Sciences 119(14): e2114432119.
doi:10.1073/pnas
Yilbas,
B.S., Al-Sharafi, A. & Ali, H. 2019. Surfaces for self-cleaning. Self-Cleaning
of Surfaces and Water Droplet Mobility. Elsevier. pp. 45-98.
doi:10.1016/b978-0-12-814776-4.00003-3
Zhang,
J.X.J. & Hoshino, K. 2018. Fundamentals of nano/microfabrication and scale
effect. Molecular Sensors and Nanodevices. 2nd ed. Massachusetts:
Academic Press. pp. 43-111. doi:10.1016/b978-0-12-814862-4.00002-8
Zhao,
H.X., Guo, D.S. & Liu, Y. 2013. Binding behaviors of p-sulfonatocalix[4]arene
with gemini guests. Journal of Physical Chemistry B 117(6): 1978-1987.
doi:10.1021/jp312744d
*Pengarang untuk surat-menyurat; email: faridah.lisa@fsmt.upsi.edu.my
|