Sains Malaysiana 53(6)(2024): 1405-1419

http://doi.org/10.17576/jsm-2024-5306-14

 

Molecular Modelling Comparisons, Optical and Band Gap Characterisation of 4-Sulfocalix[4]arene Thin Film
(Perbandingan Pemodelan Molekul, Pencirian Jurang Optik dan Jurang Jalur bagi Filem Nipis 4-Sulfokaliks[4]arene)

FARISH ARMANI HAMIDON, FARIDAH LISA SUPIAN*, MAZLINA MAT DARUS, WONG YEONG YI & NUR FARAH NADIA ABD KARIM

 

Physics Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia

 

Diserahkan: 11 Mac 2024/Diterima: 8 Mei 2024

 

Abstract

The advantageous property of water-soluble calixarenes is their ability to form stable complexes with inorganic guest molecules. Due to these attributes, their application in areas including molecular recognition, sensing, and supramolecular chemistry is extraordinarily alluring. The 4-sulfocalix[4]arene (SC[4]) is a water-soluble molecule and a derivative of the calixarene family that has both aromatic rings and sulfonate groups. The thin films were prepared using a spin-coating technique and characterised by Ultraviolet-Visible Spectroscopy (UV-Vis). By employing the Corey-Pauling-Koltun (CPK) model in conjunction with density functional theory (DFT), the height and diameter of SC[4] were precisely determined by devotedly representing its molecular shape and size. Then, the calixarene thin film’s optical properties and light absorption by the thin film were determined using the absorbance graph and Beer-Lambert law equation. The band gap energy of the thin film was determined to be equal to 4.44 eV through the Tauc-plot method. These results substantiate the integration of CPK models validated using DFT for measuring the size of SC[4] molecules and characterising the thin film’s optical characteristics. In a nutshell, the implementation of the CPK models was validated with DFT to determine the height and diameter of the SC[4] and the optical characterisation of its thin film was thoroughly determined in this study. The results obtained from this study are not only essential for understanding the properties of SC [4] but also inspire further research for multiple applications such as molecular recognition, adsorption and supramolecular chemistry.

 

Keywords: Calixarene; Corey-Pauling-Koltun model; spin coating method; ultraviolet-visible spectroscopy

 

Abstrak

Antara manfaat kaliksarena larut air ialah keupayaan dan kemampuannya untuk membentuk kompleks yang stabil dengan molekul tetamu bukan organik. Disebabkan sifat ini, penggunaannya dalam pelbagai bidang termasuk pengecaman molekul, penderiaan dan kimia supramolekul amat menarik perhatian untuk dikaji. 4-sulfokaliks[4]arena (SC[4]) adalah molekul larut air dan terbitan daripada keluarga kaliksarena yang mempunyai cincin aromatik dan kumpulan sulfonat dan selaput nipisnya difabrikasi menggunakan teknik salutan berputar dan dicirikan dengan Spektroskopi Cahaya Tampak-Ultralembayung (UV-Vis). Dengan menggunakan Model Corey-Pauling-Koltun (CPK) dan disahkan bersama dengan teori kefungsian ketumpatan (DFT), ketinggian dan diameter SC[4] ditentukan dengan tepat dalam melambangkan bentuk dan saiz molekulnya secara nyata dan realistik. Kemudian, sifat optik selaput nipis kaliksarena dan penyerapan cahaya oleh selaput nipis tersebut ditentukan menggunakan graf penyerapan dan persamaan Hukum Beer-Lambert. Jurang jalur selaput nipis ditentukan bersamaan dengan 4.44 eV melalui kaedah plot Tauc. Hasil keputusan kajian ini telah mengesahkan integrasi model CPK yang disahkan menggunakan DFT untuk mengukur saiz molekul SC[4] dan mencerap ciri optik selaput nipisnya. Secara ringkasnya, pelaksanaan model CPK disahkan dengan DFT untuk menentukan ketinggian dan diameter SC[4] dan pencirian optik selaput nipisnya telah ditentukan dengan teliti dalam kajian ini. Hasil yang diperoleh daripada kajian ini penting kerana boleh digunakan dalam penyelidikan lanjut untuk pelbagai aplikasi seperti pengecaman molekul, penjerapan dan kimia supramolekul.

 

Kata kunci: Kaliksarena; model Corey-Pauling-Koltun; spektroskopi cahaya tampak-ultralembayung; teknik salutan berputar

 

RUJUKAN

Acikbas, Y., Bozkurt, S., Halay, E., Capan, R., Guloglu, M.L., Sirit, A. & Erdogan, M. 2017. Fabrication and characterization of calix[4]arene Langmuir–Blodgett thin film for gas sensing applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry 89(1-2): 77-84. doi:10.1007/s10847-017-0732-6

Arduini, A., Pochini, A., Reverberi, S. & Ungaro, R. 1984. p-t-Butyl-calix[4]arene tetracarboxylic acid. A water soluble calixarene in a cone structure. Journal of the Chemical Society, Chemical Communications 15: 981-982 doi:10.1039/C39840000981

Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293 (5528). doi:10.1126/science.1061051

Atwood, J.L., Barbour, L.J., Hardie, M.J. & Raston, C.L. 2001. Metal sulfonatocalix[4,5]arene complexes: Bi-layers, capsules, spheres, tubular arrays and beyond. Coordination Chemistry Reviews 222(1): 3-32. doi:10.1016/S0010-8545(01)00345-9

Ball, V., Winterhalter, M., Perret, F., Esposito, G. & Coleman, A.W. 2001. P-sulfonatocalix[6]arene is an effective coacervator of poly(allylamine hydrochloride). Chemical Communications 1(21): 2276-2277. doi:10.1039/b106361h

Barbosa-García, O., Ramos-Ortíz, G., Maldonado, J.L., Pichardo-Molina, J.L., Meneses-Nava, M.A., Landgrave, J.E.A. & Cervantes-Martínez, J. 2007. UV-vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 66(1): 129-134. doi:10.1016/j.saa.2006.02.033

Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M. & Rizzolio, F. 2020. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 25(1): 112. doi:10.3390/molecules25010112

Bensenane, B., Asfari, Z., Platas-Iglesias, C., Esteban-Gómez, D., Djafri, F., Elhabiri, M. & Charbonnière, L.J. 2016. Sulphur-rich functionalized calix[4]arenes for selective complexation of Hg2+ over Cu2+, Zn2+ and Cd2+. Dalton Transactions 45(38): 15211-15224. doi:10.1039/c6dt02628a

Bhushan, B. 2017. Introduction to Nanotechnology. 4th ed. Springer Handbooks. doi:10.1007/978-3-662-54357-3_1

Blinder, S.M. 2020. Density functional theory. Introduction to Quantum Mechanics. Massachusetts: Academic Press. pp. 235-244. doi:10.1016/B978-0-12-822310-9.00022-7

Böckmann, M., Schemme, T., De Jong, D.H., Denz, C., Heuer, A. & Doltsinis, N.L. 2015. Structure of P3HT crystals, thin films, and solutions by UV/Vis spectral analysis. Physical Chemistry Chemical Physics 17(43): 28616-28625. doi:10.1039/c5cp03665h

Boudrioua, A., Chakaroun, M. & Fischer, A. 2017. Organic light-emitting diodes. An Introduction to Organic Lasers. ISTE Press - Elsevier. pp. 49-93.

Bridges, C.R., Ford, M.J., Popere, B.C., Bazan, G.C. & Segalman, R.A. 2016. Formation and structure of lyotropic liquid crystalline mesophases in donor-acceptor semiconducting polymers. Macromolecules 49(19): 7220-7229. doi:10.1021/acs.macromol.6b01650

Budurova, D., Momekova, D., Momekov, G., Shestakova, P., Penchev, H. & Rangelov, S. 2021. PEG-modified tert-octylcalix[8]arenes as drug delivery nanocarriers of silibinin. Pharmaceutics 13(12): 2025. doi:10.3390/pharmaceutics13122025

Chen, F., Li, X., Hihath, J., Huang, Z. & Tao, N. 2006. Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. Journal of the American Chemical Society 128(49): 15874-15881. doi:10.1021/ja065864k

Cheng, X. 2014. Nanostructures: Fabrication and applications. In Nanolithography: The Art of Fabricating Nanoelectronic and Nanophotonic Devices and Systems, edited by Feldman, M. Cambridge: Woodhead Publishing. pp. 348-375.

Christian, G.D., Dasgupta, P.K. & Schug, K.A. 2013. Analytical Chemistry. 7th ed. John Wiley & Sons Inc.

Corminboeuf, C., Tran, F. & Weber, J. 2006. The role of density functional theory in chemistry: Some historical landmarks and applications to zeolites. Journal of Molecular Structure: THEOCHEM 762(1-3): 1-7. doi:10.1016/j.theochem.2005.07.036

de La Lande, A., Alvarez-Ibarra, A., Hasnaoui, K., Cailliez, F., Wu, X., Mineva, T., Cuny, J., Calaminici, P., López-Sosa, L., Geudtner, G., Navizet, I., Iriepa, C.G., Salahub, D.R. & Köster, A.M. 2019. Molecular simulations with in-deMon2k QM/MM, a tutorial-review. Molecules 24(9): 1653. doi:10.3390/molecules24091653

Dillon, P.F., Root-Bernstein, R.S. & Lieder, C.M. 2006. Molecular shielding of electric field complex dissociation. Biophysical Journal 90(4): 1432-1438. doi:10.1529/biophysj.105.071969

Dinu, R., Miller, E., Yu, G., Chen, B., Scarpaci, A., Chen, H. & Pilgrim, C. 2013. High-speed polymer optical modulators. In Optical Fiber Telecommunications: Components and Subsystems, Chapter 5, edited by Kaminow, I.P., Li, T. & Willner, A.E. Massachusetts: Academic Press. pp. 175-204.

Edelsbrunner, H. & Koehl, P. 2003. The weighted-volume derivative of a space-filling diagram. PNAS 100 (5) 2203-2208. www.pnas.orgcgidoi10.1073pnas.0537830100

Español, E. & Villamil, M. 2019. Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules 9(3): 90. doi:10.3390/biom9030090

Fahmy, S.A., Ponte, F., Sicilia, E. & El-Said Azzazy, H.M. 2020. Experimental and computational investigations of carboplatin supramolecular complexes. ACS Omega 5(48): 31456-31466. doi:10.1021/acsomega.0c05168

Fan, Q., Su, W., Guo, X., Wang, Y., Chen, J., Ye, C., Zhang, M. & Li, Y. 2017. Side-chain engineering for efficient non-fullerene polymer solar cells based on a wide-bandgap polymer donor. Journal of Materials Chemistry A 5(19): 9204-9209. doi:10.1039/c7ta02075a

Feldman, M. 2014. Nanolithography: The Art of Fabricating Nanoelectronic and Nanophotonic Devices and Systems. Woodhead Publishing Limited. doi:10.1533/9780857098757

Field, M.J., Bash, P.A. & Karplus, M. 1990. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. Journal of Computational Chemistry 11(6): 700-733. doi:10.1002/jcc.540110605

Fujimoto, T., Takeda, K. & Nonaka, T. 2008. Chapter 7. Airborne molecular contamination: Contamination on substrates and the environment in semiconductors and other industries. In Developments in Surface Contamination and Cleaning. 2nd ed., edited by Kohli, R. & Mittal, K.L. William Andrew Publishing. pp. 197-329.

Garcia-Rio, L., Basílio, N. & Francisco, V. 2020. Counterion effect on sulfonatocalix[n]arene recognition. Pure and Applied Chemistry 92(1): 25-37. doi:10.1515/pac-2019-0305

Goodsell, D.S. & Jenkinson, J. 2018. Molecular illustration in research and education: Past, present, and future. Journal of Molecular Biology 430(21): 3969-3981. doi:10.1016/j.jmb.2018.04.043

Gunawardhana, R., Bulumulla, C., Gamage, P.L., Timmerman, A.J., Udamulle, C.M., Biewer, M.C. & Stefan, M.C. 2019. Thieno[3,2- b]pyrrole and benzo[ c][1,2,5]thiadiazole donor-acceptor semiconductors for organic field-effect transistors. ACS Omega 4(22): 19676-19682. doi:10.1021/acsomega.9b02274

Guo, D.S., Wang, K. & Liu, Y. 2008. Selective binding behaviors of p-sulfonatocalixarenes in aqueous solution. Journal of Inclusion Phenomena and Macrocyclic Chemistry 62: 1-21. doi:10.1007/s10847-008-9452-2

Gurd, F.R.N. 1974. The use of Corey-Pauling-Koltun space-filling models in teaching. Biochemical Education 2(2): 27-29. doi:10.1016/0307-4412(74)90008-9

Hanson, R.M., Prilusky, J., Zhou, R., Nakane, T. & Sussman, J.L. 2013. JSmol and the next-generation web-based representation of 3D molecular structure as applied to proteopedia. Israel Journal of Chemistry 53(3-4): 207-216. doi:10.1002/ijch.201300024

Hassan, A.K., Nabok, A.V., Ray, A.K., Lucke, A., Smith, K., Stirling, C.J.M. & Davis, F. 1999. Thin films of calix-4-resorcinarene deposited by spin coating and langmuir-blodgett techniques: Determination of film parameters by surface plasmon resonance. Materials Science and Engineering: C 8-9: 251-255.

Haunschild, R., Barth, A. & French, B. 2019. A comprehensive analysis of the history of DFT based on the bibliometric method RPYS. Journal of Cheminformatics 11(1): 72. doi:10.1186/s13321-019-0395-y

Herráez, A. 2006. Biomolecules in the computer: Jmol to the rescue. Biochemistry and Molecular Biology Education 34(4): 255-261. doi:10.1002/bmb.2006.494034042644

Hu, X.Y., Peng, S., Guo, D.S., Ding, F. & Liu, Y. 2015. Molecular recognition of amphiphilic p-sulfonatocalix[4]arene with organic ammoniums. Supramolecular Chemistry 27(5-6): 336-345. doi:10.1080/10610278.2014.967242

Jmol: An open-source Java viewer for chemical structures in 3D. 2023. ‘Jmol’. Accessed May 12. http://www.jmol.org/

Jubu, P.R., Obaseki, O.S., Nathan-Abutu, A., Yam, F.K., Yusof, Y. & Ochang, M.B. 2022. Dispensability of the conventional Tauc’s plot for accurate bandgap determination from UV–Vis optical diffuse reflectance data. Results in Optics 9: 100273. doi:10.1016/j.rio.2022.100273

Kafle, B.P. 2020. Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization. Chemical Analysis and Material Characterization by Spectrophotometry. Elsevier. pp. 147-198. doi:10.1016/b978-0-12-814866-2.00006-3

Khalifeh, S. 2020. Optimization of electrical, electronic and optical properties of organic electronic structures. Polymers in Organic Electronics. ChemTec Publishing. pp. 185-202. doi:10.1016/B978-1-927885-67-3.50009-2

Kissell, R. & Poserina, J. 2017. Advanced math and statistics. Optimal Sports Math, Statistics, and Fantasy. Elsevier. pp. 103-135. doi:10.1016/B978-0-12-805163-4.00004-9

Kohn, W. 1998. Nobel lecture: Electronic structure of matter-wave functions and density functionals*. Reviews of Modern Physics 71: 1253-1266. doi:10.1103/revmodphys.71.1253

Kuball, H.G., Höfer, T. & Kiesewalter, S. 2016. Chiroptical spectroscopy, general theory. In Encyclopedia of Spectroscopy and Spectrometry. 3rd ed., edited by Lindon, J.C., Tranter, G.E. & Koppenaal, D.W. Massachusetts: Academic Press. pp. 217-231. doi:10.1016/B978-0-12-409547-2.04980-5

Li, Z., Weng, K., Chen, A., Sun, X., Wei, D., Yu, M., Huo, L. & Sun, Y. 2017. Benzothiadiazole versus thiophene: Influence of the auxiliary acceptor on the photovoltaic properties of donor–acceptor-based copolymers. Macromolecular Rapid Communications 39(2): 1700547. doi:10.1002/marc.201700547

Lim, C.K.D. & Supian, F.L. 2019. Calix[4]arene and calix[8]arene langmuir films: Surface studies, optical and structural characterizations. International Journal of Innovative Technology and Exploring Engineering 8(8S): 80-85.

Livingston, E.H. 2004. The mean and standard deviation: What does it all mean? Journal of Surgical Research 119(2): 117-123. doi:10.1016/j.jss.2004.02.008

Loftus, S.C. 2022. What is statistics and why is it important? Basic Statistics with R: Reaching Decision with Data. Massachusetts: Academic Press. pp. 3-6. doi:10.1016/B978-0-12-820788-8.00010-9

Maurer, R.J., Freysoldt, C., Reilly, A.M., Brandenburg, J.G., Hofmann, O.T., Björkman, T., Lebègue, S. & Tkatchenko, A. 2019. Advances in density-functional calculations for materials modeling. Annual Review of Materials Research 49(1): 1-30. doi:10.1146/annurev-matsci-070218

McMurry, J. 2023. Benzene and aromaticity. In Organic Chemistry: A Tenth Edition. Rice University: OpenStax. https://openstax.org/details/books/organic-chemistry

Millership, J.S. 2001. A preliminary investigation of the solution complexation of 4-sulphonic calix[n]arenes with testosterone. Journal of Inclusion Phenomena and Macrocyclic Chemistry 39: 327-331. doi:10.1023/A:1011196217714

Millington, K.R. 2008. Improving the whiteness and photostability of wool. In Advances in Wool Technology, edited by Johnson, N.A.G. & Russell, I.M. Woodhead Publishing. pp. 217-247. doi:10.1533/9781845695460.2.217

Mishra, A., Bhatt, N. & Bajpai, A.K. 2019. Nanostructured superhydrophobic coatings for solar panel applications. In Nanomaterials-Based Coatings: Fundamentals and Applications, edited by Tri, P.N., Rtimi, S. & Plamondon, C.M.O. Elsevier. pp. 397-424. doi:10.1016/B978-0-12-815884-5.00012-0

Motooka, T. & Uda, T. 2015. Multiscale modeling methods. In Handbook of Silicon Based MEMS Materials and Technologies, edited by Lindroos, V., Tilli, M., Lehto, A. & Matooka, T. William Andrew. pp. 241-252. doi:10.1016/B978-0-323-29965-7.00008-7

Nasrollahzadeh, M., Sajadi, S.M., Sajjadi, M. & Issaabadi, Z. 2019. Applications of nanotechnology in daily life. Interface Science and Technology 28: 113-143. doi:10.1016/B978-0-12-813586-0.00004-3

Owen, T. 1996. Fundamentals of Modern UV-Visible Spectroscopy: A Primer. Hewlett-Packard Company. doi:10.1017/CBO9781107415324.004

Özbek, Z., Çapan, R., Göktaş, H., Şen, S., İnce, F.G., Özel, M.E. & Davis, F. 2011. Optical parameters of calix[4]arene films and their response to volatile organic vapors. Sensors and Actuators B: Chemical 158(1): 235-240. doi:10.1016/j.snb.2011.06.011

Pal, S. 2020. Structure analysis and visualization. Fundamentals of Molecular Structural Biology. Academic Press. pp. 119-147. Elsevier. doi:10.1016/b978-0-12-814855-6.00006-7

Patra, J.K. & Baek, K.H. 2014. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanomaterials 2014: 417305. doi:10.1155/2014/417305

Pederson, M.R. & Baruah, T. 2015. Self-interaction corrections within the fermi-orbital-based formalism. In Advances in Atomic, Molecular and Optical Physics, edited by Arimondo, E., Lin, C.C. & Yelin, S.F. Massachusetts: Academic Press. 64: 153-180. doi:10.1016/BS.AAMOP.2015.06.005

Pentassuglia, S., Agostino, V. & Tommasi, T. 2018. EAB - Electroactive biofilm: A biotechnological resource. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, edited by Wandelt, K. Elsevier. pp. 110-123. doi:10.1016/B978-0-12-409547-2.13461-4

Perkampus, H-H. 1992a. Analytical applications of UV-Vis spectroscopy. In UV-VIS Spectroscopy and Its Applications. Springer Lab Manuals. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-77477-5_4

Perkampus, Heinz-Helmut. 1992b. Photometers and spectrophotometers. In UV-VIS Spectroscopy and Its Applications. Springer Lab Manuals. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-77477-5_3

Perkampus, Heinz-Helmut. 1992c. UV-VIS Spectroscopy and Its Applications. Springer Lab Manuals. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-77477-5

Perret, F., Lazar, A.N. & Coleman, A.W. 2006. Biochemistry of the para-sulfonato-calix [n]arenes. Chemical Communications 23: 2425-2438. doi:10.1039/b600720c

Petty, M.C. 2005. Organic thin film architectures: Fabrication and properties. In Surfaces and Interfaces for Biomaterials, edited by Vadgama, P. Woodhead Publishing. pp. 60-82. doi:10.1533/9781845690809.1.60

Pietrzyk, D.J. & Frank, C.W. 1979. Qualitative analysis: Ultraviolet, visible, and infrared. Analytical Chemistry, 2nd ed. Massachusetts: Academic Press. pp. 410-424. doi:10.1016/B978-0-12-555160-1.50022-8

Prata, J.V., Barata, P.D. & Pescitelli, G. 2014. Inherently chiral calix[4]arenes with planar chirality: Two new entries to the family. Pure and Applied Chemistry 86(11): 1819-1828. doi:10.1515/pac-2014-0707

Rahimpour, M.R., Makarem, M.A., Kiani, M.R. & Sedghamiz, M.A. 2021. Nanofluids for Heat and Mass Transfer. Elsevier. https://doi.org/10.1016/C2020-0-00358-0.

Rajavelu, K. & Rajakumar, P. 2018. Synthesis, characterization, photophysical and electrochemical properties of triazinooxacalix[2]arenes with bisphenol a motif. Tetrahedron 74(22): 2812-2818. doi:10.1016/j.tet.2018.04.064

Ramírez-Santos, Á.A., Acevedo-Peña, P. & Córdoba, E.M. 2012. Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol. Química Nova 35(10): 1931-1935. doi:10.1590/S0100-40422012001000008

Razali, A.S., Supian, F.L., Abu Bakar, S., Richardson, T.H. & Azahari, N.A. 2015. The properties of carbon nanotube on novel calixarene thin film. International Journal of Nanoelectronics and Materials 8: 39-45.

Rocha, F.S., Gomes, A.J., Lunardi, C.N., Kaliaguine, S. & Patience, G.S. 2018. Experimental methods in chemical engineering: Ultraviolet visible spectroscopy-UV-Vis. Canadian Journal of Chemical Engineering 96(12): 2512-2517. doi:10.1002/cjce.23344

Saleh, J., Haider, S., Akhtar, M.S., Saqib, M., Javed, M., Elshahat, S. & Kamal, G.M. 2023. Energy level prediction of organic semiconductors for photodetectors and mining of a photovoltaic database to search for new building units. Molecules 28(3): 1240. doi:10.3390/molecules28031240

Saleh, N.A., Elhaes, H. & Ibrahim, M. 2017. Design and development of some viral protease inhibitors by QSAR and molecular modeling studies. In Viral Proteases and Their Inhibitors, edited by Gupta, S.P. Massachusetts: Academic Press. pp. 25-58. doi:10.1016/B978-0-12-809712-0.00002-2

Shahzad, F., Sheltami, T.R., Shakshuki, E.M. & Shaikh, O. 2016. A review of latest web tools and libraries for state-of-the-art visualization. Procedia Computer Science 98: 100-106. doi:10.1016/j.procs.2016.09.017

Shinkai, S., Araki, K., Matsuda, T., Nishiyama, N., Ikeda, H., Takasu, I. & Iwamoto, M. 1990. NMR and crystallographic studies of a p-sulfonatocalix[4] arene-guest complex. Journal of the American Chemical Society 112(25): 9053-9058. doi:10.1021/ja00181a004

Shinkai, S., Mori, S., Tsubaki, T., Sone, T. & Manabe, O. 1984. New water-soluble host molecules derived from calix[6]arene. Tetrahedron Letters 25(46): 5315-5318. doi:10.1016/S0040-4039(01)81592-6

Silakari, O. & Singh, P.K. 2021. Fundamentals of molecular modeling. Concepts and Experimental Protocols of Modelling and Informatics in Drug Design. Massachusetts: Academic Press. 1-27. doi:10.1016/b978-0-12-820546-4.00001-5

Smith, G. 2015. Descriptive statistics. Essential Statistics, Regression, and Econometrics. Massachusetts: Academic Press. pp. 71-98. doi:10.1016/B978-0-12-803459-0.00003-0

Supian, F.L., Lim, D.C.K. & Razali, A.S. 2017. Conductivity comparison of calix[8]arene-MWCNTs through spin coating technique. Sains Malaysiana 46(1): 91-96. doi:10.17576/jsm-2017-4601-12

Tian, X., Chen, L.X., Yao, Y.Q., Chen, K., Chen, M.D., Zeng, X. & Tao, Z. 2018. 4-sulfocalix[4]arene/cucurbit[7]uril-based supramolecular assemblies through the outer surface interactions of cucurbit[n]uril. ACS Omega 3(6): 6665-6672. doi:10.1021/acsomega.8b00829

Torres-Rivero, K., Bastos-Arrieta, J., Fiol, N. & Florido, A. 2021. Metal and metal oxide nanoparticles: An integrated perspective of the green synthesis methods by natural products and waste valorization: Applications and challenges. Comprehensive Analytical Chemistry 94: 433-469. doi:10.1016/bs.coac.2020.12.001

Van Mourik, T., Bühl, M. & Gaigeot, M.P. 2014. Density functional theory across chemistry, physics and biology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372(2011): 20120488. doi:10.1098/rsta.2012.0488

Wahyuningsih, S., Wulandari, L., Wartono, M.W., Munawaroh, H. & Ramelan, A.H. 2017. The effect of pH and color stability of anthocyanin on food colorant. IOP Conference Series: Materials Science and Engineering 193: 012047. doi:10.1088/1757-899X/193/1/012047

Warshel, A. & Levitt, M. 1976. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. Journal of Molecular Biology 103(2): 227-249. doi:10.1016/0022-2836(76)90311-9.

Warshel, A. & Karplus, M. 1972. Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization. Journal of the American Chemical Society 94(16): 5612-5625. doi:10.1021/ja00771a014.

Wypych, G. 2015. Handbook of UV Degradation and Stabilization. 2nd ed., Chemtech Publishing. doi:10.1016/C2014-0-01351-2

Xing, J., Takeuchi, K., Kamei, K., Nakamuro, T., Harano, K. & Nakamura, E. 2022. Atomic-number (Z)-correlated atomic sizes for deciphering electron microscopic molecular images. Proceedings of the National Academy of Sciences 119(14): e2114432119. doi:10.1073/pnas

Yilbas, B.S., Al-Sharafi, A. & Ali, H. 2019. Surfaces for self-cleaning. Self-Cleaning of Surfaces and Water Droplet Mobility. Elsevier. pp. 45-98. doi:10.1016/b978-0-12-814776-4.00003-3

Zhang, J.X.J. & Hoshino, K. 2018. Fundamentals of nano/microfabrication and scale effect. Molecular Sensors and Nanodevices. 2nd ed. Massachusetts: Academic Press. pp. 43-111. doi:10.1016/b978-0-12-814862-4.00002-8

Zhao, H.X., Guo, D.S. & Liu, Y. 2013. Binding behaviors of p-sulfonatocalix[4]arene with gemini guests. Journal of Physical Chemistry B 117(6): 1978-1987. doi:10.1021/jp312744d

 

*Pengarang untuk surat-menyurat; email: faridah.lisa@fsmt.upsi.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya